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tion of the reasoning outlined above in the general three-dimensional case (or even for 
the case of three-dimensional perturbations of the flow here considered) leads to conclu- 

sions as follows: 
1. For finite conductivity (n # 0) the equations are, as before evolutionary. 

2. For perfect conductivity (rl = 0) the characteristic equation generalizing (4) has 
part of its roots of the form 2 = as $ U(1), i.e. o = as2 $ O(s) in which a is real. The 
predominant term of this expression is “neutral”, and the fulfillment of condition (5) for 
s -) 00 depends on the next following term, while in the method of plane waves, which 

presupposes constant coefficients,the predominant asymptotic terms only have a meaning. 
Thus, in the general nondissipative case the problem is much more involved, necessi- 

tating the consideration of variable coefficients of equations. In a way it will be a gene- 
ralization of the system of equations of the complicated problem of the evolutionary 
property of the Schroedinger equation with variable coefficients. 
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1. We shall consider the simultaneous nonstationary motion of a perfectly conductive 
gas in a homogeneous magnetic field I[ perpendicular to the direction of velocity taking 

into account the force of gravity 6. If at the initial instant the motion is isentropic, then 

with the condition of frozen lines of magnetic field ff = bp the coefficient b will remain 
constant throughout the duration of motion. 

Then, in the case here considered the Euler equation together with the continuity equa- 
tion is reduced to the system of conventional gas dynamics equations [l and 23 

in 
u,+uux+p=--6, P1i-uPx+PuX=9, P,=APk+g (1.1) 

The effective velocity of sound in this case is 

Here ,: is the usual velocity of sound in a conductive medium, and uq the Alfven 
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velocity. 
Let i, be the effective enthalpy of the conductive gas. Then with the use of relation- 

ship p%ZP,,, = ~,,,~p-’ dp = di, we can derive from system (1.1) 

[ 

a 
-:- (u f cm) &] u (1) = 0, u (1) - 1‘ -;- gt & s dp - dl c,* r_ (1.3) 

It will be seen from this that the specified state of the medium as defined by CJ (t) 
spreads up-, and downstream of the flow at velocities u f c,,, while interacting with 
each other, The equilibrium of the conductive gas compressed by the gravitational field 

is expressed for t < 0 by Eq. ,$ 
&-_i 4 

k_t bzP 
+ - = - fit + cctnst 

4n 
and for the simple case of k = 3 the effective velocity of sound is defined by Formula 

, Bm.-_.$..bg+ 
1 
% 

cm (1.4) 
B(cm,,) = 

llere cm0 corresponds to the value of cm at + = 0. 

At the initial instant of motion there exists an effective initial pressure distribution, 

and by the same token an effective velocity of sound to which corresponds Eq. (1.4) 
must also exist in the conductive gas column. Hence, the discharge of a conductive gas 
in a gravitational field cannot be defined by a particular solution of the system of Eqs. 

(I. I), i.e. it is necessary in this case to resort to a general solution of this system p and 

33. 
AS the conditions ds / dt = u jT cm define the characteristics of systems (1. l), hence 

along these lines the relationship 
u Ji :rr=* 1 c, - -/- const ;; 

must be satisfied, or in the case here considered 

u + fit = jI {cm + b,2(3A)ll*ln [(B (cm) + l/gb&‘/‘+ (B (cm) - 1/&20~]) i- (; (l.5) 

Here, C = const is defined by the initial condition. 

When the discharge is to the left, the moving rarefaction wave front bordering at any 
given instant on the unperturbed area is defined by Eq. 

dz i dt = - cm = - 13-4 (Ba - ‘/,b~4)]‘” 

Integrating this equation with condition t = 0, I? = & we obtain the law of motion 
of the front in the form 

1 
==z Cm2 - ~,,,a~ + 3,lh0’ (B (cm) - B (c,)) 

I 

t- -- 1 
Cm-Cmo+- ’ boa (3nf’* In c, + (c,,,” + !‘/I .,i bo+ 

6 2 cm"+ (cm,,* -I- 3fdW"' 3 
At the rarefaction wave front u = 0, hence from (1.5) we have 

The front of a conductive gas discharged into vacuum in which the magnetic field is 
absent attains the maximum expansion velocity, i. e. is subject to law 

cm rz 0, u + gt == f (fm*) 



984 

f (c,) = cm + b$ (3A)“* {In [(B (c,,,,,) + ‘/lbo+ + (B (cm) - l/, b&“J 7 In b,,) 

or to its equivalent 

dt I dt - U = f &o) - gt 
Hence 

z = tf f*) - s&s 

The gas attains its maximum lift z,,,x = f (~,,,a) / 2g for t = f (cno) / g , after which 
it begins to fall “down”. A new wave is then generated which can be readily defined, as 
we have for it conditions u = 0 and m a = 3A (Bs - l/,b$) 

We note the following aspects. In order to simplify computations we may by a suitable 
selection of coefficients & and b, , and without appreciable loss of the result accuracy, 
substi~~ for the condition of frozen lines of the magnetic field H = bp the expression 

p = haps = blPS + bs 

The system of Eqs. (1.3) will then have the simple form 

~(~*c,,s(~*Cm)~(U*Cm)+8=o 

the solution of which obviously is 

z = (a f cm) t + ‘IsgP + B,* fU f % + gtf 

Here Jr1 @ + Cm + g0, F2 (e - +, + gt) are arbitrary functions. It may be said that 

in this case the two magnitudes u f c,,, propagate independently of each other in the 
form of two noninteracting simple waves. 

If the discharge of the conductive gas which initially was in adiabatic equilibrium 

c, ’ = .+j= - 2gx, u = 0 is in the direction of positive values of 5, then 

2=.r+~-~(Utgt-i_c,+c,)f-2c*(u+gr+c,fc~)I 
2 

Hence the motion of the rarefaction wave front is now in accordance with the law 
5 = -(~,,&+~l,gt~): and that of the expansion front with 

s = c,l - s/&s (=,,,x = cmoa I 2g for t = cm0 / g) 

1, The motion of an incompressible perfectly conductive liquid flowing in an open 
channel in a transverse field may be represented by the analogous motion of a one-dimen- 

sional perfectly conductive gas. In this case it is necessary to assume that the depth of 
liquid and the channel width are small in comparison with the wave length 143. The fun- 
damental equations of such a flow are 

nt -I- uux + p-1 (P + HP I Sz), = 0, Ft i- lu& = 0, H-bfl (2.f) 

where P is the area of the channel cross section. 

Since dp = gpdh, where h is the channel depth, hence the equation of motion is of 
the form @] ~6 + uuX i- gh, + (N” / 8np), = 0 (2.2) 

In the case of a prismatic channel F = F (h), therefore Eq. (2.2) with the aid of 
equality gdh I dP = b@ may be written in the form 

et + l&U, + CFF, =. 0, c = 4 + @ I 4zP = const 

By the introduction of the new variable Cs = Cl;p we reduce system (2.1) to the con- 

venient form Iz, and S] 
ut + uux 4 C&my = 0, Gnf + UCmv + Cm% = 0 (2.3) 
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which in turn may be written in the form 

[ 
d A(ufc?n) ;il’ 

;](UfC*)=O (2.4, 

Here c,,, is the effective velocity of the sound defined by (1.2), and in the case of a 
conductive liquid we have c = 1/m, U= = B (oh / Znpb,,)“‘. It will be seen from system 
(2.4) that magnitudes u & c, have constant values for points moving in the conductive 

liquid at velocities u f r,,,, i.e. for points the motions of which are defined by Eq. 
(lx 1 dl = 1‘ k Cm* while the related perturbations moving towards each other do not in- 
teract between themselves. 

Thus, system (2.4) coincides with the differential equations of the adiabatic flow of a 
perfect gas with the adiabatic exponent li = 3. This feature makes possible the direct 
application to this problem of all of the gas-dynamical results related to motions free 

of shock wave generation. 
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We consider the problem of stabilization of the steady motions of a nonlinear control 
system in the critical case of a pair of purely imaginary roots. We introduce a nonana- 
lytic control in two critical variables and use the Liapunov’s classical theory of stabi- 
lity of motion [l and 23 together with the methods developed in [3]. 

1. Let us consider the controlled system 
dX 
~=px+B”+g(X’84) (1.1) 

where z denotes the ( n + 2)-dimensional perturbation vector, u is the m-dimensional 
control vector which we shall assume to be unaffected by any disturbances, A and B 

are constant (n + 2) x (n + 2) and (n + 2) x m matrices, respectively, and g (x, u) 


